DC ARC FAULT SCENARIOS AND DETECTION METHODS IN BATTERY STORAGE SYSTEMS

F. Eger, G. Bopp, D. Freiberger, N. Lang, H. Laukamp, G. Rouffaud

Fraunhofer-Institut for Solar Energy Systems ISE

ICDCM
Nürnberg, 27.06.2017

www.ise.fraunhofer.de
COPYRIGHT

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Further information on this publication can be found here:
AGENDA

- Introduction

- Basics of DC arc faults

- Arc fault scenarios in battery systems

- Fault simulation in DC systems

- Conclusion
Introduction

Market developments

- Falling prices for Lithium-Ion batteries have driven demand upwards
- More than 60,000 residential Li-Ion systems installed in Germany (20,000 in 2016!)
- Growing market to be expected from low up to high power systems

Source left: K.-P. Kairies, ISEA, RWTH Aachen, 2017 [1]
Introduction

Research motivation

- Every electrical installation bears an inherent risk of fire, mainly through
 - Increasing contact resistances or
 - Arc faults
- Arc faults in DC systems are more critical than in AC due to continuous current flow
- High levels of energy density in battery storage systems require quality standards and fire prevention methods
- Research project SPEISI is aiming at these open issues

Project partner:
Basics of DC arc faults

Characteristics

- Series arc faults triggered by loose contactors, broken isolation, bad solder joints etc.
- Arc emits a broadband high frequency voltage noise with a 1/f characteristic (pink noise)
 - Measurable as impedance-dependent current noise
 - \(I_{Arc}(f) = V_{Arc}(f) / Z(f) \)
- Minimal voltage for stable arc ca. 15 V
- Minimal current ca. 1 A
- Arcing voltage will change operating point of DC system

Source down: J. Zornikau, TÜV Rheinland [2]
Basics of DC arc faults

Application

- DC arc fault detection (AFD) mandatory in Photovoltaic systems in the USA since 2011
- Triggered by changes in high frequency current noise and/or operating point

- Inverter integrated devices,…
- Combiner integrated devices…
- and standalone devices available.

Source: SMA Solar Technology
Source: SolarBOS
Source up: Santon, down: E-T-A
Arc fault scenarios in battery systems

Overview

AC-Coupling

- Sonnenbatterie, SMA Sunny Boy
- Storage, Varta home, Kaco blueplanet gridsave

DC-Coupling

- Fronius Symo Hybrid, ABB React, Kostal Piko, SMA Sunny Boy
- Smart Energy, nedap PowerRouter

Generator-Coupling

- Solarwatt MyReserve, sia energy Pro
Arc fault scenarios in battery systems

Arc mitigation through EMS

- Conditions for stable arc:
 \[V_{\text{Arc, min}} \approx 15 \text{ V}, \ I_{\text{min}} \approx 1 \text{ A} \]

- Conditions not met for battery systems \(\leq 60 \text{ V} \)
 - Operational area of battery voltage or resulting currents to small

![Diagram showing operational and prohibited areas for different battery voltages](image)
Arc fault scenarios in battery systems

Arc mitigation through EMS

- Conditions for stable arc:
 \(V_{\text{Arc, min}} \approx 15 \text{ V}, \ I_{\text{min}} \approx 1 \text{ A} \)

- Conditions not met for battery systems \(\leq 60 \text{ V} \)
 - Operational area of battery voltage or resulting currents too small

- Series arc faults are actively mitigated by EMS in battery systems \(\leq 60 \text{ V}! \)
Arc fault scenarios in battery systems

Arc mitigation through EMS

- Conditions for stable arc:
 \[V_{\text{Arc,min}} \approx 15 \, \text{V}, \, I_{\text{Min}} \approx 1 \, \text{A} \]

- Conditions not met for battery systems \(\leq 60 \, \text{V} \)
 - Operational area of battery voltage or resulting currents to small

- Series arc faults are actively mitigated by EMS in battery systems \(\leq 60 \, \text{V} \)!
Arc fault scenarios in battery systems
Arc detection via noise analysis

- As in PV systems detection is possible via current noise analysis, but:
 - Only possible for DC currents up to 20 A
 - Low system impedance
 - Higher ambient and arcing noise levels
 - Clipping of standard PV AFDs possible

![Graphs showing noise analysis in PV and Battery systems](image)
Arc fault scenarios in battery systems
Arc detection via voltage analysis

- Arc fault in 200 V battery system during discharge
- EMS voltage within operational area
- Constant current, stable arc

\[V_{\text{Bat}} \neq V_{\text{EMS}} \]

- \(V_{\text{Bat}} \neq V_{\text{EMS}} \) is a simple characteristic for detection of series arcs in battery systems!
Fault simulation in DC systems
Replay method: scheme

Step 1
- Recording of arcing signal or perturbation in the DC system under test
- Creation of a database with various fault locations, materials, system impedances...

Step 2
- Induction of recorded current signal on DUT in DC circuit
- Control circuit with semiconductor can reproduce the recorded noise up to high frequencies
- Reproducible, partly automatable tests

Image Sources: TÜV Rheinland (middle), Sachverständigenbüro Kuchlmayr, München (right)
Fault simulation in DC systems
Replay method: realisation

Specification:
- Applicable for DC systems up to 1000 V and 24 A
- Reproduction of noise signals from ca. 5 up to 500 kHz
- Galvanically isolated input signals
- Optional: steps in operation point of up to 40 V or 4 A
Conclusion

- Arc fault risk depends on system configurations
 - Battery systems ≤ 60 V have no need for arc fault detection
- Simple arc fault detection through voltage measurement at battery and EMS possible
 - Sufficient resolution and data sampling rate required
- Reproduction of arc fault scenarios and other noise perturbations in various DC systems using Replay method
 - Fraunhofer ISE is collecting signal database and is looking for collaboration
- Fire prevention, safe installation and operation of stationary battery systems needs appropriate standards like VDE AR-E-2510-50 or BATSO 01
 - International standards are not covering these topics sufficiently
 - Luckily very few cases of fire through faults at stationary Li-Ion systems are known
Thank you for your kind attention!

Thanks to the German Federal Ministry of Economics for project funding (FKZ: 0325742B)

Fraunhofer-Institute for Solar Energy Systems ISE

Felix Eger

www.ise.fraunhofer.de
felix.eger@ise.fraunhofer.de
Sources
